
P2P Botnet Detection using Behavior Clustering &
Statistical Tests

Su Chang
Iowa State University

Dept. of Electrical and Computer Engineering
Ames, Iowa, USA

changs@iastate.edu

Thomas E. Daniels
Iowa State University

Dept. of Electrical and Computer Engineering
Ames, Iowa, USA

daniels@iastate.edu

ABSTRACT
Botnets are widely believed to be the most serious danger
to the Internet. Most recent research on botnet detection
focuses on centralized botnets and primarily relies on two
assumptions: prior knowledge of potential C&C channels
and capability of monitoring them. However, when botnets
switch to a P2P (peer-to-peer) structure and utilize mul-
tiple protocols for C&C, the above assumptions no longer
hold. Consequently, the detection of P2P botnets is more
difficult. In this paper, we relax the above two assumptions
and focus on C&C channel detection for P2P botnets that
use multiple protocols (randomly chosen) for C&C. We first
consider a clustering based node behavior profiling approach
to capture the node behavior clusters in a network; we then
propose two detection schemes using formal statistical tests
on popular behavior clusters in this network. In brief, we de-
tect C&C behavior by measuring its impact on one or more
normal behavior clusters in a statistical way. In the initial
evaluations, we validate the assumptions made in this paper
under different real user traces from enterprise network en-
vironments. We then evaluate the proposed approaches to
detect the C&C channel in both simple and realistic cases
and achieve encouraging results in terms of high detection
and low false positive rates.

Categories and Subject Descriptors
C.2 [Computer]: Communication Networks—Security and
protection; I.2.6 [Artificial Intelligence]: Learning; I.5.2
[Design Methodology]: Pattern analysis

General Terms
Security, Algorithms, Experimentation

Keywords
Machine learning, anomaly detection, network security

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AISec’09, November 9, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-781-3/09/11 ...$10.00.

1. INTRODUCTION
A bot is common parlance on the Internet for a soft-

ware program that is a software agent [1]. According to [2],
the common malicious use of botnets can be briefly classi-
fied as Distributed Denial-of-Service (DDoS) attacks, spam-
ming, traffic sniffing, keylogging, spreading new malware,
click fraud and mass identity theft. Previously, DDoS and
spamming were usually highly concerned. However, more
and more applications like keylogging, click fraud are be-
ing used for profit purposes. For example, our analysis on
Agobot, Sdbot and Q8bot suggests one important charac-
teristic of botnets: CDkey (e.g. Half-Life CDKey, CSKEY)
grabbing. In addition, there is usually more than one bot-
master controlling the botnet, which increases the botnet
usage and makes it harder for traceback (our analysis shows
one version of Sdbot allows up to four botmasters to control
the IRC channel simultaneously).

Most current research on botnets focuses on C&C detec-
tion for centralized botnets, usually under two inherent as-
sumptions: prior knowledge of potential C&C channels (e.g.
IRC or HTTP) and capability of monitoring them. However,
when botnets switch to more advanced ones (e.g. Nugache
bot using random ports in C&C [13]), those assumptions no
longer hold, making most current detection schemes unable
to detect the more advanced P2P botnets.

1.1 Overview of the Proposed Approach
In this paper, we propose schemes to detect C&C channel

of P2P botnets based on node behavior profiles proposed in
[6], which characterizes the node behavior by jointly con-
sidering spatial and temporal correlations. The approach in
[6] takes into account the fact that network applications are
of different popularities and two different nodes may share
similar behaviors, such as the behavior at time 1 of host i
and the behavior at time 2 of host j in Fig. 1.

In general, from the studies of P2P botnets in [33] [35]
[7] [31], the advantages (e.g. robustness) of P2P botnets
is mainly from the structure rather than the specific P2P
protocols. Consequently, many P2P botnets [33] [35] [7] [31]
proposed in the literature can randomly choose from either
P2P protocols and/or non-P2P protocols for C&C. In this
paper, given the trace data we have, we only consider the
latter one and regard the detection of P2P botnets using
P2P protocols as our further work. Utilizing multiple non-
P2P ports in C&C for P2P botnets is easy to implement and
possibly widely used in current botnets. For example, once
the Nugache bot was altered to use random high-numbered
service ports, it dropped off of nearly everyone’s radar [13].

23

Figure 1: Examples of node behavior overlap

Therefore, our focus is to design detection schemes with-
out previous two assumptions. Given the unique character-
istics (small volume, short lifetime and mixed with normal
traffic) of C&C behavior, and the correlation of node be-
haviors, we are able to design anomaly detection schemes
based on formal statistical tests to determine if there are
notable underlying botnet C&C behaviors in the network.
The main idea of our approaches is that the botnet C&C
behaviors will cause statistical changes for the existing be-
havior clusters, especially popular ones. To be specific, we
make the following contributions:

1. Capture the normal traffic using node behavior clus-
ters, formulate the problem of detecting C&C traffic as
detecting additional behaviors over the existing normal
behavior clusters.

2. Propose two anomaly detection schemes using statis-
tical tests on popular behavior clusters, under the as-
sumption that certain metrics of popular behavior clus-
ters will be statistically stable.

3. Validate the assumptions made in this paper using real
traces from enterprise networks.

4. Evaluate the detection schemes in both simple and re-
alistic scenarios.

In the initial evaluations, similar to [15], since the enter-
prise network is less studied than the Internet [23], we con-
sider the enterprise network from [23] in this paper. More-
over, in addition to simply combining two independent traf-
fic types (bot traffic and normal traffic) during the evalua-
tion, we consider the case where the bot traffic is correlated
with the normal traffic. That is, to avoid being detected, the
botmaster can randomly assign the C&C ports and peers
within the same range of the targeting network to each bot.
This correlation is usually not considered in the current re-
search, but we believe this case is more realistic and could
be adopted by the botmaster easily.

The BotMiner in [15] is also designed for P2P botnet de-
tection. It did a good job of detecting the C&C channel
of P2P botnets under the assumption of frequent commu-
nication between peers and capability of detecting attacks
launched by bots after C&C. However, as four histograms in
C&C communications are needed during detection, it mainly
focuses on detecting P2P botnets requiring frequent commu-
nication between peers (e.g. PULL based). As botnets do

not require frequent communications among peers in gen-
eral (except the bot located in the network using NAT), it
is uncertain that their scheme can detect general P2P bot-
nets (e.g. the sample needed for histogram may not be large
enough for general botnets). Moreover, detection of attacks
generated by bot is a necessary condition in [15] to detect
the C&C channel. Given many attacks used by botnets (e.g.
clickfraud) are much harder to detect, it is uncertain that
their scheme can detect C&C channel of P2P botnets launch-
ing more sophisticated attacks. Therefore, more work on
detecting C&C of P2P botnets needs to be done. In this
paper, our work aims to detect C&C channel without the
above constraints, and only rely on the statistical nature of
the node behavior clusters.

This paper is organized as follows: We discuss the re-
lated work in Section 2. In Section 3, we introduce the
correlation based node behavior profiling approach, and two
anomaly detection schemes. In Section 4, we first validate
the assumptions made for detection, and evaluate the pro-
posed schemes by using P2P botnet C&C traffic with the
real trace from enterprise network environments, both sim-
ple and realistic cases are further considered. We conclude
the paper in Section 5.

2. RELATED WORK
The structure of P2P botnets has been widely discussed

in the literature. In [18], the authors list the timeline of
captured P2P botnets. The authors in [10] did a thorough
study on botnet structures and show that random botnets
are highly resistant to different removal methods. Several
different P2P botnets have also been proposed such as hy-
bridbot [33], randombot [35], lcbot [7] and superbot [31]. To
be specific, as illustrated in Fig. 2 (each bot has a peerlist
of 5), each bot in randombot/hybridbot maintains a peerlist
for communication during C&C; superbot divides the botnet
into multiple groups, with each group having a supernode
(middle node in Fig. 2), the C&C among supernodes is like
randombot, while the C&C within each group is like central-
ized botnets; lcbot is a mixture of superbot and randombot,
each bot has a peerlist with one peer outside its group and
others within its group, it has a better performance in terms
of mean coverage after certain removals and low overhead
during C&C as shown in [7]. PUSH or PULL based com-
munications [15] can be further used for each kind of P2P
botnet, where “PUSH” refers to relaying commands to its
peers during C&C and “PULL” refers to checking peers pe-
riodically for commands. It is also worth pointing out that,
in all these P2P botnets, there is no limitation to use any
specific protocols for C&C, thus different protocols can be
used for C&C, (e.g. there are reports of botnets using gmail
and skype for C&C). In practice, it is easy to implement
multiple protocols for C&C in P2P botnets, and it is very
likely to happen widely nowadays (e.g. Nugache bot using
random ports for each bot during C&C [13]).

Many schemes have been proposed in the literature to
detect botnets with a centralized structure. To summa-
rize, those schemes are based on one or more of the fol-
lowing techniques: honeypot/honeynet [2], DNS inspection
[35] [24], DNSBL inspection [26], traffic pattern recogni-
tion/clustering [4], temporal or spatial correlation [15] [17]
[16], and many other schemes [8] [14] [19] [32] [29]. We only
discuss the recent advances in botnet detection. To be spe-
cific, the authors in [26] proposed a detection scheme on

24

Figure 2: P2P botnet structures

DNSBL counter-intelligence. However, it is only focused on
finding botnet members generating spams. In [27], by aggre-
gating traffic of similar payload, same external destination,
and internal hosts with similar OS platforms, the authors
proposed a system called TAMD to detect malware includ-
ing botnets. In [19], machine learning is used to identify
the bot controllers of IRC based botnets. The authors in
[15] [17] [16] proposed three kinds of detection approaches:
BotHunter, BotMiner, and BotSniffer. BotHunter detects
the bots by associating IDS events to a user-defined bot in-
fection dialog model, and it is a passive detection system.
BotSniffer is designed to detect centralized botnets by using
horizontal correlation. BotMiner also utilizes a horizontal
correlation approach that examines correlation across mul-
tiple hosts [15]. It did a good job of detecting the C&C chan-
nel of P2P botnets under the assumption of frequent com-
munication between peers and detection of attacks launched
by bots after C&C.

Most schemes rely on the two assumptions for detection
or are based on the detection of worms. Unfortunately, they
become ineffective when botnets shift to other structures,
other propagation methods or use encryption in C&C. More-
over, many new features of botnets discussed in the recent
literature make the existing countermeasures less effective.
In addition to P2P structure, encryption, use of common
protocols for C&C are also within the main directions of the
evolution. Encryption makes it more secure for a botmaster
to control the botnet, resulting in the inefficacy of schemes
based on signatures or anomaly detections using character
distribution (e.g. n-gram distribution). Normally, symmet-
ric encryption is expected, but it is possible to make use of
the PKI structure [3]. C&C by other commonly used pro-
tocols makes the communication among bots more covert
[13]. Consequently, there are reports of botnets using Skype
[21] and Gmail [5] in C&C. It is also possible that a botnet
could use multiple protocols for one C&C cycle [13], making
detection even more difficult. Other evolutions are listed in
Table. 1. However, little research has been done towards
these directions.

3. NODE BEHAVIOR BASED DETECTION
In this section, we first discuss the attributes used for

profiling. Clustering is then used to find the representative
behavior clusters. Statistical tests are further discussed to
construct the proposed detection algorithms.

3.1 Attribute Selection & Behavior Clustering
According to [6], the attributes are chosen from the ob-

servation of the action sequence of normal users:

1. A normal user first decides which application/service
he wants to use (e.g. in order to do some searching,
HTTP is used).

2. Among those destinations providing the wanted ser-
vice, he then determines which destination(s) he is in-
terested in, this usually refers to the contents provided
by the destination (e.g. To do a search, the user could
use Yahoo or Google, and the user may choose Google).

3. Traffic is further generated when he visits the chosen
destination.

The action sequence differs greatly between the normal
user and the botnet. Since the botnet is dynamic: peers
in the botnet can be dynamically shut down or removed
from the botnet at any time, a bot may first generate traffic
to find the online peers on certain ports from its peer list,
and then send a command to all the available peers. On
the other hand, it is very unlikely that a normal user (or a
majority of normal users) generates the normal behavior this
way. Therefore, this difference provides inherent guidelines
in selecting and simplifying the attributes for node profiling.

Consequently, for attributes with large dimensions, e.g.
the dimension of destinations may be quite large, we need
to simplify the attributes in a way more favorable for normal
behaviors while unfavorable for C&C. Firstly, we categorize
the destinations as least, less, moderate and most popu-
lar categories, and only consider the corresponding packets
generated in each category (represented as pktd,i,t). This
is because although normal users are capable of choosing
arbitrary destinations, they usually associate themselves on
a small range of destinations of different popularity (or in-
degree, a destination in-degree is the number of nodes con-
necting to it). On the other hand, the peers chosen in P2P
botnets are random regardless of the destination popularity.
The four categories are achieved by sorting the in-degree of
destinations, dividing the in-degree into four quartiles and
counting the packets in each quartile for each node.

Secondly, we consider all the services as attributes for
node profiling, as the combination of all the normal ser-
vices should also be considered normal. In addition, we only
consider TCP traffic, as most of C&C traffic uses TCP (it
is similar to design behavior profiles under UDP). Within
each application, we consider the packets sent for that ap-
plication. This is because the node behavior can be bet-
ter characterized by the packets sent rather than the bytes
sent, as bytes only represent the accumulated level of pack-
ets. Instead, we consider the total amount of traffic (in
bytes) generated and received using tgi and tri for node
i. On the other hand, we do not consider the information
such as inter-arrival time for each service, because it is very
sensitive to network conditions, such as congestion level,
routing policy, buffer management and location of moni-
tors. Therefore, it may not be a good indicator of node
behaviors. Thus the node behavior xi,t for node i at time
t is xi,t = {(pkti,j,t, tgi,t, tri,t, pktd,i,t)|1 ≤ i ≤ N, 1 ≤ j ≤
M, 1 ≤ t ≤ T, 1 ≤ d ≤ 4} [6].

As there is no prior knowledge on how many common
behavior clusters are shared by different nodes in the net-

25

Table 1: Evolution of bot techniques
Traditional Evolution

Botnet size Large [9] Small [9]
Bot bandwidth Varies [9], usually small Large [9]
C&C Centralized (IRC) Fully or partially distributed [10] [35] [33] [31]
Authentication Plain text MD5 [11], PKI [33]
C&C channel IRC protocol Various protocols, e.g. HTTP [24], Voip [21], gmail [5], random ports [13]
Communication Plain text SSL [5], encryption, information hiding or covert channel
Disguise IP No Yes, fake BGP route announcement [25]
Propagation Pure worm-like Propagate by command two-phase [35], superbot [31]
Systems MS Windows Windows Linux, Mac, etc.
Others Kill Anti-Virus Kill Anti-Virus Honetypot aware [35], NAT enabled [35], mimic human

responding time interval more intelligent DNSBL lookup

work, agglomerative clustering is used to find possible clus-
ters. Since the data set under consideration is clean [23],
we first identify the active nodes that initiate connections,
as those nodes are the sources of most, if not all, network
events. This is achieved by using the method described in
[34], which is based on the SYN packet. At the same time,
the destinations’ in-degrees are calculates and sorted. Then,
at a fixed time interval, we calculate the values of the at-
tributes for each active node, which is xi,t in the above dis-
cussions. We also remove the xi,ts with tri,t equal to 0
to remove the silent nodes. Finally, we compute the log
values of those attributes. The classic agglomerative clus-
tering algorithm is further used [6], it treats each xi,t as a
cluster at the beginning, then calculated the pairwise dis-
tance for any two points (or xi,ts), and combined two points
or clusters into one cluster if the distance between them is
below a threshold Th. The criterion to compare the dis-
tance on combining clusters is the largest distance, and we
set Th = 0.25 in the evaluation section (for the traces we
have analyzed, the proposed schemes achieve similar perfor-
mances when Th is chosen from 0.2 to 0.3). The distance is
measured by the extended Jaccard distance which is defined

as [30]: d(x1, x2) = 1 − x′
1x2

||x1||2+||x2||2−x′
1x2

.

3.2 Behavior based Detection Algorithms
Of all the behavior clusters identified in the training data,

we are interested in those which are most common or popu-
lar. This is because we can get enough samples from those
popular behavior clusters, and have more accurate estima-
tions on the metrics of interest. Therefore, in terms of detec-
tion, if there is any group behavior in the new sample data
which is unseen in the training data, it will either cause
the proportion change of popular behavior clusters (e.g. the
original behavior i may switch to another behavior j, af-
fected by the unseen behavior in the new data); or the intra-
cluster distance change within each popular behavior cluster
(if the affected behavior still belongs to cluster i). Gener-
ally, both these cases will happen simultaneously in one or
more behavior clusters, so we can design algorithms based
on different statistical tests for each case. Consequently, the
assumption made in the proposed detection approaches is
that the metrics for popular behavior clusters used for de-
tection should be statistically stable across training data and
new data (we validate this assumption in the next section).

3.2.1 Behavior Proportion based Test (BPT)
For the l popular behavior clusters identified (in general,

we consider the first l clusters, e.g. l = 3), consider the

ith popular behavior (i ∈ l) a specified property in the new
data, statistical test on population proportion of specified
property can be applied in testing if the proportion of the
ith behavior in the new sample is from the same population
as the training data. To be specific, given the training data
sufficiently large, the estimate of proportion of the popular
behavior i can be considered as an accurate estimate for the
corresponding population. For any new sample captured, if
it is from the same population as the training data, under
a predetermined significance level α, the test will give no
evidence of rejecting the non-hypothesis. On the other hand,
if they are from different populations, the test will reject the
non-hypothesis.

In detail, the new sample size n and the number of oc-
currences of popular behavior i (denoted by Numi, Numi

is then a random variable) may vary from time to time. At
time interval t, two possible cases have to be considered,
one is called the large sample case, with both npi,0 ≥ 10
and n(1 − pi,0) ≥ 10, where pi,0 is the true value of the
proportion that popular behavior i in the population. The
other is called the small sample case, where either npi,0 < 10
or n(1 − pi,0) < 10, or both. Two kinds of tests are needed
for these two cases. From [12], for the large sample test,
both Numi and the estimator p̂i,new = Numi/n are ap-
proximately normally distributed. Therefore, for the null
hypothesis H0 : p̂i,new = pi,0 (with Ha : pi,new �= pi,0), the
test statistic

z =
p̂i,new − pi,0√
pi,0(1 − pi,0)/n

(1)

The above null hypothesis will be rejected if z ≥ zα/2 or
z ≤ −zα/2, otherwise, there is no evidence to reject the null
hypothesis at significance level α.

For the small sample case [12], the small-sample test can
be used, and it is based on binomial distribution. Usually
in this test, a rejection region or acceptance region is used
at given significance level α. We use the acceptance region
in this paper, it is given by [a, b], where

α/2 ≤ Bino(a; n, pi,0) (2)

Bino(b − 1; n, pi,0) ≤ 1 − α/2 (3)

If Numi in the new sample does not belong to [a, b], we
reject the null hypothesis at significance level α.

3.2.2 Behavior Mean Distance based Test (BMDT)
Another metric of interest is the mean of intra-cluster dis-

tance of each popular behavior cluster. If there is a group

26

of subtle behavior added to the network, the mean value of
intra-cluster distance may also change. Given the training
data is large enough, we can accurately estimate the mean
value for each behavior cluster. On the other hand, since the
number of each popular behavior in any new sample is usu-
ally not large enough (< 30, as the time interval under con-
sideration is short), to test if the mean values are statistically
equal, one-sample t-test can be used [20]. So we have the
null hypothesis H0 : di,new = di,0 (with Ha:di,new > di,0),
where di,new is the mean intra-cluster distance of behavior
cluster i in the new sample, and di,0 is the true value of the
mean. The t statistic is given by [20] [12]:

t =
di,new − di,0

s/
√

n
(4)

where s =
√ ∑

yj−di,new

n−1
, and yj the intra-cluster distance

of member j in behavior cluster i. The degree of freedom of
the t-test is df = n − 1.

3.2.3 Node Behavior based Detection Algorithm

Step 1: Training Data Processing
Identify first l popular behavior clusters and metrics of
interest, e.g. proportion value, and mean intra-cluster
distance from the training data.

Step 2: New Sample Data Processing
Remove the known attacks from the new sample, and
then group each behavior in the new sample data to
the closest behavior cluster by measuring the distance.
Identify the first l popular behaviors in the new sample
data. Calculate the metrics of interest.

Step 3: Behavior Proportion based Test
For each popular behavior i in the sample data, if it
satisfies the large sample case, use equation (1) for the
test, otherwise, use equation (2) and (3), at a given
significance level α.

Step 4: Behavior Mean Distance based Test
Apply t-test using equation (4) for each popular be-
havior in the sample data, at the significance level α.

Step 5: Detection
For CTD: For each popular behavior i in the new sam-
ple data, if either test (or both) is rejected, call popular
behavior i test positive; if r out of l such popular be-
haviors are test positive, generate an alarm, go to step
6. Otherwise, go to step 2.
For ITD: If there are two or more rejections in any
test from l behaviors, generate an alarm, go to step 6.
Otherwise, go to step 2.

Step 6: Indentification of C&C Nodes
For each behavior Yi in the new data, find the clos-
est behavior Xj in the training data, update Yi by
Yi = |Yi −Xj |. Use 2-means clustering to differentiate
the C&C behaviors from normal behaviors, as normal
behaviors will have Yi = |Yi −Xj | around zero vector,
while C&C behaviors will be centered at a vector point
other than zero (this step is only designed for the com-
mon case discussed in next section). Go to step 2 for
another new sample data.

Figure 3: Algorithm Description

With two kinds of formal statistical tests, it is possible to
design several detecting algorithms. In this paper, we con-
sider two of them. One is called independent test detection
algorithm (ITD), which treats two tests (BMDT or BPT)
independently, and generates an alarm when there are two

or more rejections from any test in the l popular behaviors in
the new sample data. The ITD algorithm is straightforward
and simple. The next algorithm is called correlated test de-
tection algorithm (CTD). It uses two parameters (r, l) and
examines the first l popular behaviors. For each behavior
cluster, if there is at least 1 rejection of tests by BPT or
BMDT, the corresponding behavior cluster is said to be test
positive. If at least r out of l clusters in the new sample are
test positive, an alarm is generated, otherwise, there is no
alarm. The reason of considering r behaviors together for
detection in CTD is that, in practice it is impossible to set
the α to be 0, that is to say, there are always a small num-
ber of false alarms; on the other hand, considering the subtle
group behavior will affect more than one popular behaviors
of the testing data, if there is no unseen group behavior,
it would rarely happen that two or more popular behaviors
do not pass the statistical tests at the same time interval
(it also means that the false positive rates of CTD will be
less than α). In addition, the main difference between two
schemes is that CTD takes into account the proportion and
intra-distance effects jointly. Consequently, we formulate
the above detection algorithms in Fig. 3.

4. EVALUATIONS
We use the LBNL enterprise trace data which is the latest

publicly available trace to evaluate the proposed approaches.
In the LBNL trace collection [23], four NICs are switched pe-
riodically to capture traffic traces from 18-22 different sub-
nets, with most traces being one hour long. We then choose
six representative subnets, each of which is combined by two
traces captured at different times and dates. We use time
intervals of 10 minutes to profile the node behavior. In the
evaluation part, we pick one time interval as the new data
set, and the rest time intervals as the training data. There-
fore, for each 2-hour trace, 12 possible tests are done in the
evaluation. Specifically, we consider the trace data captured
in port002, port003, port008, port010, port021 and port026
in this paper, with the size ranging from 100 to 1000 nodes.

4.1 Assumption Validation
To make the detection schemes effective, two assumptions

have to hold. That is, proportion value and mean intra-
cluster distance of the popular behaviors used in detection
should be statistically stable for any single subnet.

For the proportion case, from Table 2, 16 (tests with value
1) out of 187 times (16/187 = 0.086) that the test wrongly
rejects the null hypothesis, which is not far from the signifi-
cance level at α = 0.05 (since the number of nodes in port002
is very small, we only consider the first popular behavior).
Especially, the first popular behaviors in port003, port008
and pot010 are not very stable for the proportion test. But
other results do show certain stability of the proportion met-
ric, so we believe the assumption on the proportion test can
be considered valid at least for the LBNL trace. Similarly,
from Table 3, 7 out of 187 times (7/187 = 0.037) that the
test wrongly rejects the null hypothesis, this also matches
the significance level at α = 0.05 very well. In addition,
the test on mean intra-cluster distance is more stable (as
compared with proportion metric) across the traces under
consideration. Therefore, we conclude that the assumptions
are valid for the analysis in this paper.

27

Table 2: Proportion test results (1: reject; 0: not reject)
trace clusters t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12
port002 (1) 0 0 0 0 0 0 0
port003 (1,2,3) (0,0,0) (1,0,0) (0,0,0) (1,1,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (1,0,0) (0,0,0) (1,0,0) (1,0,0)
port008 (1,2,3) (0,0,0) (1,0,0) (0,0,0) (1,0,0) (0,0,0) (0,0,0) (0,0,0) (1,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)
port010 (1,2,3) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (1,0,0) (1,0,0) (0,0,0) (0,0,0) (1,0,0) (0,0,0) (0,0,0)
port021 (1,2,3) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)
port026 (1,2,3) (0,1,0) (0,0,1) (0,0,0) (0,0,1) (0,0,0) (0,0,0) (0,0,0) (1,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

Table 3: t-test results (1: reject; 0: not reject)
trace clusters t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11 t=12
port002 1 0 0 0 0 0 0 0
port003 (1,2,3) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,1) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)
port008 (1,2,3) (0,1,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,1) (0,0,0) (1,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)
port010 (1,2,3) (0,1,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)
port021 (1,2,3) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)
port026 (1,2,3) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (1,0,0) (0,0,0) (0,0,0) (0,1,0) (0,0,0) (0,0,0) (0,0,0)

4.2 False Positive Rate
Table 4 shows the false positive rates when different de-

tection schemes are used. We set l = 3 and r = 2 for CTD
and l = 3 for ITD. We can find that both schemes achieve
low overall false positives rates (both less than 0.05). Es-
pecially, the CTD based detection reports only one false
positive (port003 at interval 4) for the data we have ana-
lyzed. Further, if we remove the first behavior cluster in
both port008 and port003 in the detection, there is no false
alarm from both ITD and CTD schemes and the overall
false positive rate drop to 0 for the traces we have analyzed.
Therefore, from Table 4, we can find that although there
are chances that the tests are wrongly rejected, by jointly
taking into account the test results from different behavior
clusters, we can achieve a lower false positive rate.

Table 4: False positive rates for each trace
trace ITD(3) ITD(2) CTD(3, 2)) CTD(2, 2)
port003 8.3% 0 8.3% 0
port008 8.3% 0 0 0
port010 0 0 0 0
port021 0 0 0 0
port026 0 0 0 0
overall 3.3% 0 1.7% 0

4.3 Detecting the C&C in P2P Botnets
In this section, we consider two possible scenarios. One

is called simple scenario where known botnet (Nugache bot)
traffic [13] [28] is used for evaluation. This is achieved by
adding the nodes generating Nugachebot traffic to the nor-
mal trace for evaluation. This is similar to the test used in
the literature [15], where nodes using fixed port to generate
bot traffic are independent with nodes generating normal
traffic. Further, by noticing that any P2P botnet can ran-
domly choose any port for C&C (especially those used in
the training data), and the botmaster can avoid being de-
tected by using those ports for C&C, we also consider this
more realistic case in the evaluation. That is, in addition
to generating the C&C traffic from a randomly chosen port,
we enable each bot to randomly choose the port recorded in
the training data for C&C, and only communicate with peers
recorded in the training data to test the proposed schemes.

4.3.1 Detection in Simple Case
According to [28] [13] [22], the captured Nugache bot

has a peerlist containing 22 peers and uses TCP port 8 for
C&C. To evaluate the performance of the proposed detec-
tion schemes in the simple case, we use the last time inter-
val as the testing data, and the earlier time intervals as the
training data. For the testing data, in addition to the nodes
generating the normal trace traffic, we add 100 Nugachebot
nodes generating C&C traffic. To obtain the bot traffic,
we run Nugache bot over VMware and capture the traffic
on port 8. Since we also want to take into account PUSH
based P2P botnets, we only consider one round of C&C (e.g.
there is no frequent communication among peers). We use
the detection rate for the evaluation; the detection rate is
defined as the number of bots identified over the total num-
ber of bots in the data. In CTD algorithm, we set l = 3
and r = 2. Table 5 shows the results of detection rate under
trace port010, port021 and port026. We can find, for all
these traces, both schemes achieve 100% detection rate, we
also use other traces from LBNL for the evaluation and get
similar results.

Table 5: Detection rate under simple case
trace Detection rate (CTD) Detection rate (ITD)
port010 100% 100%
port021 100% 100%
port026 100% 100%

From Table 5, the proposed schemes achieve good per-
formance in terms of detection rates under the simple case.
This is not surprising, and the reason behind is that, usu-
ally TCP port 8 is not a common port, and connections of
22 IPs on port 8 are also rare. As nodes used for bots are
independent of normal nodes in the trace, the behaviors gen-
erated by the Nugache bot should deviate from any normal
behavior clusters greatly, resulting in sufficient evidences for
detection. On the other hand, the results in this simple case
only provide limited support for evaluation of the proposed
schemes, as it is very easy to design a series of variation of
Nugache bot in a way such that each bot can choose any
port used by normal users in the same network for C&C.
And it is not necessary that two bots share the same port
for C&C (e.g. one can choose TCP port 80; another can

28

choose TCP port 21, etc.). Moreover, usually the nodes
generating bot traffic should not be independent of nodes
generating normal traffic (e.g. one node can generate both
bot and normal traffic from bot program and normal user
respectively). The Nugache bot of this kind is much smarter
and stealthier than the original one; it is also more practi-
cal in implementation. Therefore, we believe experiments
of detecting such bot should be considered for a thorough
evaluation.

4.3.2 Detection in Realistic Case
Since there are no traces available for the more advanced

Nugachebot discussed above, we simulate the Nugachebot
C&C behavior and add it to the normal nodes to evaluate
the performance of the proposed approaches. In detail, we
consider the nodes generating normal traffic also generate a
small amount of P2P botnet C&C traffic. The P2P botnet
traffic at each node is generated to a port randomly chosen
from the recorded ports in the training data, and the peers
are also chosen at random from the destinations recorded in
the training data. That is, we assume the bot knows the
approximate range of destinations and services of normal
traffic in its network, only communicates with peers and
uses the port recorded in the training data for C&C. Mixing
the bot traffic with normal traffic in each node means the bot
traffic can hide itself in the normal traffic. In addition, we
reduce the peerlist to be 10. By simulating the environments
this way, we simulate the realistic case that is most favoring
the P2P botnet.

In this realistic case, what we are interested is the alarm
rate, which refers to detecting bot existence and generating
an alarm. Because this is the most important step without
which there is no chance to identify bots. Also in this case,
it is much harder to identify the bot, as bot traffic is cor-
related with the normal traffic. Therefore, we evaluate the
proposed schemes in this case using alarm rate and leave the
identification of individual bots and detection rate as future
work.

For each trace, we pick one time interval as new sample
data, simulate P2P botnet behaviors on the nodes randomly
selected from the network, and use the rest intervals as the
training data. We run the simulation 1000 times for each
interval, therefore, there are all together 12000 instances of
the P2P botnet scenarios for a 2-hour long trace. We then
calculate the alarm probability for each trace. We also set
the P2P botnet behavior occurs in 90% 70%, 50%, 30% and
10% (randomly chosen) of the nodes to test the sensitivity of
the proposed approach (each test runs 12000 times). Each
bot will connect to 10 peers during C&C. Like the simple
case, there are no frequent connections between any peers.
Among all its peers, we assume there is 50% chance that a
peer is online (a peer can be turned off, thus unavailable in
the botnet). So on average, each bot contacts ten peers, and
finds five online peers available for communication. Also, we
use the most concise communications between peers, that is,
each peer sends the command using TCP (or any protocol
over TCP). So taking into account the setup phase, there
are at least 3 packets sent for one command.

We consider trace port003 and port008 in this case as
an example. Since the first behavior cluster is not stable
in previous sections, we only consider the second and third
clusters in this section. That is, we set l = 2 for ITD and
l = 2 r = 2 for CTD. The alarm rates of CTD and ITD

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

percentage of nodes generating C&C

av
er

ag
e

de
te

ct
io

n
ra

te

ITD(2):port008
CTD(2,2):port008
ITD(2):port003
CTD(2,2):port003

Figure 4: average alarm rate for port003, 008

in Fig 4 are very good (> 95%) when the percentage of
nodes being bots is over 70%. This indicates both schemes
perform well when there are enough samples of bots available
in the network. However, when the percentage of nodes
being bots decreases from 70% to 30%, CTD based scheme
decreases much faster than ITD based scheme, this indicates
ITD is less affected by the percentage change at this interval.
This also shows that ITD based scheme is much more robust
than CTD, as CTD treats BPT and BMDT jointly, which
is much more conservative. On the other hand, when the
percentage is below 30%, both schemes decrease sharply, and
is mainly because the bot samples are not enough to cause
notable statistical changes on behavior clusters. A direct
enhancement is to consider more popular behavior clusters
during detection. On the other hand, from the perspective
of the botmaster, since the botnet will be reused multiple
times, to ensure the chance of being detected smaller than a
certain value (e.g. less than 10%), the number of bots in the
network where the proposed detection scheme (for example,
CTD) is applied should be no more than 10% of the total
nodes even if the botmaster has a good knowledge of the
network where the bots are located.

4.4 Discussions and Future Work
As shown in the evaluation section, in the initial exper-

iments, the proposed schemes achieve high performance in
the simple case, and the performance in the realistic case of
is also good (ITD is better than CTD). However, to achieve
a more accurate detection in the realistic case, in addition
to considering more popular behavior clusters, time effects
(daytime or nighttime, weekday or weekend) should be fur-
ther considered during behavior profiling and detection. As
the behavior clusters will be quite different in different times,
e.g. backup traffic is usually generated in the nighttime. On
the other hand, a whitelist of normal but uncommon behav-
ior profiles and correlating the ITD/CTD with the attack
detection (e.g. A-Plane in [15]) will further help to reduce
the false positive rates greatly.

Secondly, although the LBNL trace is the latest enter-
prise trace and widely used in many studies, it was cap-
tured during 2004 and 2005 and might be different from the
current enterprise traffic. Therefore, we will consider more
traffic traces for a thorough evaluation and design detection
schemes for P2P botnet using P2P protocols if there is any
new source of enterprise traces available. Last but not least,

29

for implementation of the proposed schemes, TCP traffic can
be divided into P2P and non-P2P traffic, detection schemes
of each traffic part can be further implemented. We will
consider the above in our future work.

5. CONCLUSION
In this paper, based on the observation of correlations in

node behaviors at different times, we designed algorithms
based on statistical tests on popular behavior clusters to
check if there is any unseen subtle activity from C&C in P2P
botnets using non-P2P protocols. In the initial evaluations,
we validated the assumption considered and achieved good
performance in terms of high detection and low false positive
rates and the results are encouraging for further research.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grant No. 0627409, the Center
for Information Protection, and by the Iowa State University
Information Assurance Center.

6. REFERENCES
[1] http://en.wikipedia.org/wiki/internet bot.

[2] http://www.honeynet.org/papers/bots.

[3] A. M. Antonopoulos. Security predictions for 2009,
http://www.computerworld.com.au/.

[4] M. Bailey, E. Cooke, D.Watson, F. Jahanian, and
N. Provos. Hybrid honeypot architecture for scalable
network monitoring. Technical report, October 2004.

[5] C. A. J. Bambenek. Botnets: Proactive system
defense. In RO-DARPA-DHS Special Workshop on
Botnets, 2006.

[6] S. Chang and T. E. Daniels. Correlation based node
behavior profiling for enterprise network security. In
SECURWARE, 2009.

[7] S. Chang, L. Zhang, Y. Guan, and T. Daniels. A
framework for p2p botnets. In International
Conference on Communications and Mobile
Computing, Jan, 2009.

[8] M. Collins, T. Shimeall, S. Faber, J. Janies, R.Weaver,
M. D. Shon, and J. Kadane. Using uncleanliness to
predict future botnet addresses. In IMC, 2007.

[9] E. Cooke, F. Jahanian, and D. McPherson. The
zombie roundup: Understanding, detecting, and
disrupting botnets. In SRUTI, 2005.

[10] D. Dagon, G. Gu, C. Lee, and W. Lee. A taxonomy of
botnet structures. In ACSAC, 2007.

[11] D. Dagon, C. C. Zou, and W. Lee. Modeling botnet
propagation using time zones. In Annual Network and
Distributed System Security Symposium, 2006.

[12] J. L. Devore. Probability and Statistics for Engineering
and the Sciences. Brooks/Cole Publishing Company,
6th edition, 2003.

[13] D. Dittrich and S. Dietrich. P2p as botnet command
and control: a deeper insight. In Malware, 2008.

[14] J. Goebel and T. H. Rishi. Identify bot contaminated
hosts by irc nickname evaluation. In HotBots, 2007.

[15] G. Gu, R. Perdisci, J. Zhang, and W. Lee. Botminer:
Clustering analysis of network traffic for protocol- and
structure-independent botnet detection. In Security,
2008.

[16] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and
W. Lee. Bothunter: Detecting malware infection
through ids-driven dialog correlation. In Proceedings of
the 16th USENIX Security Symposium, 2007.

[17] G. Gu, J. Zhang, and W. Lee. Botsniffer: Detecting
botnet command and control channels in network
traffic. In NDSS, 2008.

[18] G. JB, S. V, and N. C. Peer-to-peer botnets:
Overview and case study. In Proc. of the 1st Workshop
on Hot Topics in Understanding Botnets, 2007.

[19] A. Karasaridis, B. Rexroad, and D. Hoeflin. Widescale
botnet detection and characterization. In USENIX
Hotbots, 2007.

[20] M. H. Kutner, C. J. Nachtsheim, j. Neter, and L. W.
Applied Linear Statisti.al Models. McGraw-Hill, 2005.

[21] P. Laborge. Bot attacks could hide in voip traffic. In
www.securityfocus.com/print/brief/119, 2007.

[22] L. Liu, S. Chen, G. Yan, and Z. Zhang. Bottracer:
Execution-based bot-like malware detection. In ISC,
2008.

[23] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson,
and B. Tierney. A first look at modern enterprise
traffic. In ACM/USENIX Internet Measurement
Conference, 2005.

[24] M. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A
multifaceted approach to understanding the botnet
phenomenon. In Internet Measurement Conference,
2006.

[25] A. Ramachandran and N. Feamster. Understanding
the network-level behavior of spammers. In
SIGCOMM, September 2006.

[26] A. Ramachandran, N. Feamster, and D. Dagon.
Revealing botnet membership with dnsbl
counter-intelligence. In SRUTI, 2006.

[27] M. K. Reiter and T.-F. Yen. Traffic aggregation for
malware detection. In the Fifth GI International
Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, 2008.

[28] R. Schoof and R. Koning. Detecting peer-to-peer
botnets. http://staff.science.uva.nl/delaat/sne-2006-
2007/p17/report.pdf.

[29] L. Stinson and J. Mitchell. Host-based, run-time
win32 bot detection. In RO-DARPA-DHS Special
Workshop on Botnets, 2006.

[30] A. Strehl, J. Ghosh, and R. J. Mooney. Impact of
similarity measures on web-page clustering. In AI for
Web Search, 2000.

[31] R. Vogt and J. Aycock. Attack of the 50 foot botnet.
Technical report, 2006.

[32] K. Wang, G. Cretu, and S. Stolfo. Anomalous
payload-based worm detection and signature
generation. In RAID, 2005.

[33] P. Wang, S. Sparks, and C. C. Zou. An advanced
hybrid peer-to-peer botnet. In HotBots, 2007.

[34] S. Wei, J. Mirkovic, and E. Kissel. Profiling and
clustering internet hosts. In Proceedings of the 2006
International Conference on Data Mining, June 2006.

[35] C. Zou and R. Cunningham. Honeypot-aware
advanced botnet construction and maintenance. In
DSN, 2006.

30

